A Gauss-Newton Approach for Solving Constrained Optimization Problems Using Differentiable Exact Penalties

نویسندگان

  • Roberto Andreani
  • Ellen H. Fukuda
  • Paulo J. S. Silva
چکیده

We propose a Gauss-Newton-type method for nonlinear constrained optimization using the exact penalty introduced recently by André and Silva for variational inequalities. We extend their penalty function to both equality and inequality constraints using a weak regularity assumption, and as a result, we obtain a continuously differentiable exact penalty function and a new reformulation of the KKT conditions as a system of equations. Such reformulation allows the use of a semismooth Newton method, so that local superlinear convergence rate can be proved under an assumption weaker than the usual strong second-order sufficient condition and without requiring strict complementarity. Besides, we note that the exact penalty function can be used to globalize the method. We conclude with some numerical experiments using the collection of test problems CUTE.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis

We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...

متن کامل

Trust-region methods for rectangular systems of nonlinear equations

Here Θ : X → IR is a continuously differentiable mapping, X ⊆ IR is an open set containing the feasible region Ω and Ω is an n-dimensional box, Ω = {x ∈ IR : l ≤ x ≤ u}. These inequalities are meant component-wise and l ∈ (IR ∪−∞), u ∈ (IR ∪∞). Taking into account the variety of applications yielding the problem (1), we allow any relationship between m and n. The relevance of this problem is we...

متن کامل

The preemptive resource-constrained project scheduling problem subject to due dates and preemption penalties: An integer programming approach

Extensive research has been devoted to resource constrained project scheduling problem. However, little attention has been paid to problems where a certain time penalty must be incurred if activity preemption is allowed. In this paper, we consider the project scheduling problem of minimizing the total cost subject to resource constraints, earliness-tardiness penalties and preemption penalties, ...

متن کامل

Preconditioned All-at-once Methods for Large, Sparse Parameter Estimation Problems

The problem of recovering a parameter function based on measurements of solutions of a system of partial diierential equations in several space variables leads to a number of computational challenges. Upon discretization of a regularized formulation a large, sparse constrained optimization problem is obtained. Typically in the literature , the constraints are eliminated and the resulting uncons...

متن کامل

Convergence Analysis of the Gauss-Newton-Type Method for Lipschitz-Like Mappings

We introduce in the present paper a Gauss–Newton-type method for solving generalized equations defined by sums of differentiable mappings and set-valued mappings in Banach spaces. Semi-local convergence and local convergence of the Gauss–Newton-type method are analyzed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Optimization Theory and Applications

دوره 156  شماره 

صفحات  -

تاریخ انتشار 2013